Tetrahedron Letters, Vol.25, No.3, pp 337-340, 1984 Printed in Creat Britain

APPLICATION OF LONG RANGE J C-H RESOLVED 2D SPECTROSCOPY (LRJR) IN STRUCTURAL ELUCIDATION OF NATURAL PRODUCTS. THE STRUCTURE OF OXIRAPENTYN

Haruo Seto*, Kazuo Furihata, Noboru Otake, Yasuhiro Itoh#, Shuji Takahashi#, Tatsuo Haneishi#, and Muneki Ohuchi⁺

Institute of Applied Microbiology, University of Tokyo 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan 113 #Fermentation Research Laboratories, Sankyo Co., Ltd. 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan 140 +JEOL, Nakagami, Tokyo, Japan 196

Summary: The structure of a fungal metabolite, oxyrapentyn has been determined as shown in Fig. 7 by application of a new NMR technique, long range J C-H resolved 2D spectroscopy (LRJR).

One of the problems in the structural elucidation of complicated molecules by NMR spectroscopy is how to connect proton spin systems separated by quaternary carbons or heteroatoms. This problem has been partly solved by ¹H-NMR NOE experiment and/or ¹³C-{¹H} long range selective proton decoupling (LSPD)¹). Although the latter method is very useful in case of aromatic or saturated systems, in which carbon signals to be observed are coupled to a few protons, it is not of use for compounds which give complicated splitting patterns of carbon resonances in the proton coupled ¹³C-NMR spectra.

The technique proposed by Bax^{2} , long range J C-H resolved 2D spectroscopy (LRJR), has overcome this problem and enables to observe selectively only long range couplings between carbons and a given proton. This method is based on an existing 2D-Fourier transform experiment³⁾ which detects ¹³C spin echoes modulated by heteronuclear spin-spin coupling, but it uses a frequency-selective 180° radiofrequency pulse applied to an isolated proton resonance. In our

experiments, however, we used selective proton decoupling instead of the frequency-selective pulse because of experimental easiness, and the irradiation power was maintained at a very low level ($\gamma H_2/2\pi = 11$ Hz) so as to affect only the long range C-H coupling (Fig. 1). As pointed out by Bax^{2} , the technique provides precise measurements of long range C-H

couplings and therefore useful for studies of molecular conformation as evidenced in this work. We wish to report herein the application of LRJR for the structural determination of a fungal metabolite, $oxyrapentyn^{4}$.

Oxyrapentyn (<u>I</u>) is an antibiotic produced by <u>Beauveria felina</u> SANK 13682 and active against gram positive bacteria⁴⁾. The physicochemical properties of <u>I</u> is as follows; $C_{18}H_{20}O_6$ (EIMS, M⁺ m/z 332, found C:65.42, H:6.05, calcd. C:65.05, H:6.07), mp. 114-115°C, $[\alpha]_D^{20}$ -111.7°(c 1, CHCl₃), UV λ_{max}^{MeOH} 225 nm (E^{1%}_{1cm}480), IR ν_{max}^{KBr} 2230, 1740 and 1710 cm⁻¹.

The ¹³C-NMR spectrum (100 MHz, $CDCl_3$)⁵⁾ of <u>I</u> revealed the following carbons (in ppm); 4 X CH₃ (20.6, 21.3, 22.7 and 24.9), CH₂ (32.4), 4 X CH (61.3, 63.6, 68.0 and 72.7), CH₂= (124.5), 5 X -C- (54.0, 63.9, 74.7, 79.3 and 88.3), -C= (125.1), -O-C=O (169.9) and -C=O (194.2). Since the presence of a triple bond in I was suggested by the IR band at 2230 cm⁻¹, two quaternary carbon resonances at 79.3 and 88.3 ppm were ascribed to sp carbons. Two methine signals at 61.3 and 68.0 ppm were assigned to epoxide functions based on their large C-H coupling constants ($J_{C_{-H}}$ =187 $Hz)^{6)}$. Since the methine protons at 3.24 and 3.83 ppm appended to these carbons were not coupled to each other and no other carbons showed such large C-H coupling, it is evident that there exist two -CH-C- moieties in I.

The 400 MHz ¹H-NMR⁵) (CDCl₃) of <u>I</u> showed the following signals (in ppm); 1.23 (CH₃, s), 1.45 (CH₃, s), 1.92 (CH₃-C=, dd, J=1.0 and 1.5 Hz), 2.10 (CH₃CO-, s), 5.36 and 5.46 (CH₂=C-, dq, J=1.5 and 1.5 Hz, dq, J=1.0 and 1.5 Hz), 3.24 (-CH-O-, bs), 3.84 (-C₃H-O-, d, J_{3,4}=2.0 Hz), 4.64 $(-C_{4}H-O-, bd, J_{3,4}=2.0 Hz)$, 1.46, 2.61 $(-HC_{9}H-, J_{gem}=15 Hz, J_{9a,8}=J_{9b,8}=3.0 Hz)$, and 4.96 $(-C_{8}H-, J_{2}H-, J_{2$

In the 2D-COSY spectrum of I. long range couplings were observed between methyl signals at 1.23 and 1.45 ppm; methine protons at 3.24 and 4.64 ppm; exomethylene protons (5.36 and 5.46 ppm) and an allyl methyl at 1.92 ppm. These results

t, J_{8,9a}=J_{8,9b} =3.0 Hz).

No NOE effect observed between H $_{
m H}$ and H $_{
m f}$ excluded the arrangement of these two protons in an adjacent position with their dihedral angle being close to 90°. At this point, it is not certain which of C_1 and C_5 joins the epoxide formation with C_6 .

Since there exit many quaternary carbons in ${f I}$, further structural information could not be obtained by 1 H-NMR spectral analysis. Thus, use was made of INADEQUATE technique $^{7)}$ which enables to detect selectively C-C spin coupling at natural abundance Fig. 3

level. As a result, the partial structure containing C1, C2 and C_{10} to C_{13} was proved as shown in Fig. 3. However, this method was not so useful in the structural analysis of I, since it contains several kinds of C-C linkage including a triple bond and epoxides whose C-C coupling constants range

from ca. 185 to 30 Hz. This situation required to repeat very time-consuming measurement several times by varying the time interval, au, given by au=1/4J $_{
m C=C}$ for INADEQUATE experiment 7). Therefore, we tried to apply LRJR²⁾ for further structural analysis of <u>I</u>.

Selective irradiation of H_3 caused C_2 , C_4 , C_5 , C_9 and C_{10} to collapse to doublets (Fig. 4). Since C₂ and C₁₀, which are proved to be two or three bonds away from H_3 by their long range couplings $({}^{2}J_{C-H} \text{ or } {}^{3}J_{C-H}=2.0 \text{ and } 6.0 \text{ Hz})^{8}$, are present in the partial structure (Fig. 3), C_{3} must be connected to C_2 resulting in the epoxide ring formation. The spin coupling between C_5

$$\begin{array}{c} \text{Jcc Hz} \\ \begin{array}{c} 59.5 \\ \hline 103.8 \\ 194.2 \\ \hline 194.2 \\ \hline 194.2 \\ \hline 0 \\ \hline \end{array} \begin{array}{c} 103.8 \\ 104.5 \\ \hline 104.5 \\ \hline 104.2 \\$$

Fig. 4

and H_3 (${}^3J_{C-H}$ =2.0 Hz) connects C_3 and C_5 through C_4 . The ${}^{13}C$ chemical shift of C_5 (63.9 ppm) supported its epoxide ring formation with C_6 . The very small coupling constant between H_3 and C_1 (${}^3J_{C-C}$ =ca. 0 Hz) is explained in terms of their <u>trans</u> relationship with respect to the epoxide structure⁸). It is well known that the small coupling constants are observed with epoxide ${}^{4J}_{1.8}_{(Hz)}$ protons in the same stereochemistry⁹). This value is in sharp contrast to

that of C₁₀ which is in <u>cis</u> relationship to H₃. The coupling between C₉ and H₃ (${}^{4}J_{C-H}$ =1.8 Hz) is ascribed to W-form relationship of these atoms and therefore. C₉ must be connected to C₁ or C₅.

Irradiation of H₆ (Fig. 5) proved the couplings with C₁ (4.1 Hz) and C₂ (4.7Hz) which must be assigned to ${}^{2}J_{C-H}$ or ${}^{3}J_{C-H}$. Thus, C₆ and C₁ are directly connected to each other. The very small coupling between H₆ and C₄ (${}^{3}J$ =ca. 0 Hz) is explained by stereochemical relationship similar to that between H₃ and C₁ (<u>vide supra</u>). The magnitude of the coupling constant of C₉ (${}^{3}J$ =2.5 Hz) shows it to be linked to C₅. The coupling (${}^{4}J_{C-H}$ =1.9 Hz) between H₆ and C₁₀ assignable to W-form relationship gave relative stereochemical information on the two epoxide rings (<u>vide infra</u>).

Irradiation of H₈ (Fig. 6) proved its coupling $({}^{3}J_{C-H}=3.5 \text{ Hz})$ with the ester carbonyl carbon, C₁₇, giving an evidence that the acetyl group is located on C₈. The only remaining function (CH₃)₂C- is thus connected to C₈ and the oxygen on C₄ to give the planar structure of <u>I</u> (Fig. 7). The very small or negligible C-H coupling constants observed between H₈ and geminal methyl carbons (C₁₅ and C₁₆) suggest the equal dihedral angles between H₈-C₁₅ and H₈-C₁₆, namely <u>gauche</u> relationship¹⁰. In this case, direct evidence for the linkage of C $_8$ and C $_7$ could not be obtained due to the lack of coupling between H $_8$ and C $_7$.

Further stereochemical information can be obtained by detailed analysis of H-H and C-H long range couplings⁸⁾ (Fig. 7). The W-form relationships between H₆ and C₁₀ (⁴J=1.9 Hz) and H₃ and C₉ (⁴J=1.8 Hz) require planarity of these coupling pathways and therefore the two epoxide rings must be on the same side of the cyclohexane ring. The W-form long range coupling between H₄ and H₆ (J=1.5 Hz) defines the relative stereochemistry of H₄. The very large coupling constant between C₅ and H₈ (³J_{C-H}=7.8 Hz) is explained by antiperiplanar relationship of these two atoms; thus, H₈ must be in an equatorial position. This geometry is in good agreement with the finding

Fig. 8

that H_8 is <u>gauche</u> to both the dimethyl carbons, C_{15} and C_{16} (<u>vide</u> <u>supra</u>). Thus the relative stereochemistry of <u>I</u> is determined as shown in Fig. 7. Hydrogenation of <u>I</u> with 10% Pd-C in MeOH gave a monodeoxydecahydro derivative, m.p. 148-149°C, $C_{18}H_{30}O_5$, EIMS m/z 326, which was assumed to possess the structure as shown in Fig. 8 by NMR spectral analysis. The CD spectrum of the compound showed a negative Cotton effect ([Θ] -1865, at 294 nm). Therefore, the absolute stereochemistry of oxyrapentyn has been determined as shown in Fig. 7.

It should be emphasized that LRJR afford an excellent methods for observing C-H long range coupling and therefore will become a very important technique for structural elucidation of natural products.

Acknowledgement This work was supported in part by Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan (No. 57560117 to H.S.).

REFERENCES AND FOOTNOTES

- 1. H. Seto et al., Tetrahedron Lett. 1978, 923.
- 2. A. Bax and R. Freeman, J. Amer. Chem. Soc. 104, 1099 (1982).
- 3. A. Bax, "Two dimentional nuclear magnetic resonance in liquid", D. Reidel Publishing Co., Dordrecht, Holland (1982).
 - R. Benn and H. Gunter, Angew. Chem. Int. Ed. Engl. 22, 350 (1983).
- 4. Y. Itoh et al., J. Antibiotics, in press.
- 5. ¹H- and ¹³C-NMR spectra were taken on a Jeol GX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. Chemical shifts are expressed in ppm relative to internal TMS.
- 6. J. B. Stothers, "Carbon-13 NMR Spectroscopy", p. 332, Academic Press, New York. 1972.
- 7. A. Bax et al., J. Amer. Chem. Soc. 102, 4849 (1980).
- For general interpretation of C-H coupling, see, J. L. Marshall, "Carbon-carbon and carbonproton NMR couplings", (Methods in stereochemical analysis, Vol. 2). Verlag Chemie International, Deerfield Beach, Florida (1983).
- 9. L. M. Jackman and S. Sternhell, "Application of nuclear magnetic resonance spectroscopy in organic chemistry" 2nd Ed. Pergamon Press, Oxford, London (1979) p. 287.
- 10. F. J. Weigert and J. D. Roberts, J. Amer. Chem. Soc. <u>91</u>, 4940 (1969).

(Received in Japan 10 October 1983)